Applied Causal Inference - Einzelansicht

Veranstaltungsart Vorlesung/Übung Veranstaltungsnummer
SWS 4 Semester WiSe 2025/26
Einrichtung Institut für Informatik und Computational Science   Sprache englisch
Belegungsfrist 01.10.2025 - 10.11.2025    aktuell
Gruppe 1:
     jetzt belegen / abmelden
    Tag Zeit Rhythmus Dauer Raum Lehrperson Ausfall-/Ausweichtermine Max. Teilnehmer/-innen
Einzeltermine anzeigen
Vorlesung Do 10:00 bis 12:00 wöchentlich 16.10.2025 bis 05.02.2026  2.70.0.08 Prof. Dr. Runge 25.12.2025: 1. Weihnachtstag
01.01.2026: Neujahr
24
Einzeltermine anzeigen
Übung Do 12:00 bis 14:00 wöchentlich 16.10.2025 bis 05.02.2026  2.70.0.08 Prof. Dr. Runge 25.12.2025: 1. Weihnachtstag
01.01.2026: Neujahr
12
Gruppe 2:
     jetzt belegen / abmelden
    Tag Zeit Rhythmus Dauer Raum Lehrperson Ausfall-/Ausweichtermine Max. Teilnehmer/-innen
Einzeltermine anzeigen
Vorlesung Do 10:00 bis 12:00 wöchentlich 16.10.2025 bis 05.02.2026  2.70.0.08 Prof. Dr. Runge 25.12.2025: 1. Weihnachtstag
01.01.2026: Neujahr
24
Einzeltermine anzeigen
Übung Do 12:00 bis 14:00 wöchentlich 16.10.2025 bis 05.02.2026  2.70.0.09 Faltenbacher 25.12.2025: 1. Weihnachtstag
01.01.2026: Neujahr
12
Leistungsnachweis

Presentation.

Lerninhalte <div dir="auto">This course begins with an introduction to causal inference adapted for applied science (see description below, several weeks, including practice slots). Students then work in groups to select a small project and develop a project plan over several weeks. They are supervised during the lecture and practice slots. The groups then present their project plan to the instructor and receive feedback. Following this, the projects are implemented and a poster is created. The last slots of the semester are reserved for poster presentations, with each group member presenting a portion of their project.</div><p> </p><p>Causal inference deals with the detection and quantification of causal relationships from observational data and model assumptions. A causal effect is defined as a change in a variable Y when an intervention is made in a variable X and the goal of causal inference is to learn such effects from purely observational data without manipulating the system. When quantifying causal effects, the model assumption usually consists of qualitative knowledge about causal dependencies in the form of graphs over nodes (X,Y,Z,...) with directed arrows indicating causal relationships, and the goal is to use this qualitative graph to quantify the precise influence of a node X on a node Y. When detecting causal relationships, i.e., reconstructing causal networks (graphs), more abstract assumptions about the underlying processes come into play, for example, that direct, indirect, or common-cause connections are also reflected in statistical dependencies, and vice versa. Causal inference then addresses not only algorithms that determine when a causal effect can be calculated (identified), but also the practical problem of statistical estimation. The initial lectures will focus on time series as the underlying data and will mainly explain the concepts and illustrate them with lots of Python tutorials. </p><p> </p><p>Prerequisites: Some experience with Python (loading data, plotting with matplotlib, numerical packages such as numpy and optionally sklearn and tigramite). </p>

Strukturbaum
Die Veranstaltung wurde 10 mal im Vorlesungsverzeichnis WiSe 2025/26 gefunden:
Vorlesungsverzeichnis
Mathematisch-Naturwissenschaftliche Fakultät
Institut für Informatik und Computational Science
Master of Science
Computational Science (Prüfungsversion ab WiSe 2019/20)
I. Kernmodule Computational Science
INF-7020 - Intelligente Datenanalyse in den Naturwissenschaften  - - - 1 offens Buch
INF-7040 - Effiziente Datenverarbeitung für die Naturwissenschaften  - - - 2 offens Buch
Institut für Physik und Astronomie
Master of Science
Physik (Prüfungsversion ab WiSe 2019/20)
Wahlpflichtmodule
Außerfachliche Ergänzung
INF-7020 - Intelligente Datenanalyse in den Naturwissenschaften  - - - 3 offens Buch
Institut für Geowissenschaften
Master of Science
Geosciences (Prüfungsversion ab WiSe 2022/23)
Elective Modules
GEW-ME04 - Modern Trends in Geosciences  - - - 4 offens Buch
Geosciences (Prüfungsversion ab WiSe 2025/26)
Wahlpflichtmodule
GEW-ME04 - Modern Trends in Geosciences  - - - 5 offens Buch
Institut für Umweltwissenschaften und Geographie
Master of Science
Geoökologie (Prüfungsversion ab WiSe 2021/22)
Vertiefungsmodule
Geoökologische Vertiefung
GEE-M-V12 - Spezielle Geoökologische Vertiefung  - - - 6 offens Buch
Geoökologische Ergänzung
INF-7040 - Effiziente Datenverarbeitung für die Naturwissenschaften  - - - 7 offens Buch
Digital Engineering Fakultät
Master of Science Computer Science (Prüfungsversion WiSe 2024/25)
Veranstaltungen  - - - 8
Humanwissenschaftliche Fakultät
Department Linguistik
Master of Science
Cognitive Systems: Language, Learning and Reasoning (Prüfungsversion ab WiSe 2014/15)
Elective Modules
AM31 - Current Topics in Computational Intelligence 1  - - - 9 offens Buch
AM32 - Current Topics in Computational Intelligence 2  - - - 10 offens Buch