Text Analysis and Machine Learning Methods for Economic Research - Einzelansicht

  • Funktionen:
  • Zur Zeit keine Belegung möglich
Veranstaltungsart Seminar Veranstaltungsnummer
SWS 2 Semester SoSe 2025
Einrichtung Wirtschaftswissenschaften   Sprache englisch
Belegungsfrist 01.04.2025 - 10.05.2025   
Gruppe 1:
     Zur Zeit keine Belegung möglich
    Tag Zeit Rhythmus Dauer Raum Lehrperson Ausfall-/Ausweichtermine Max. Teilnehmer/-innen
Einzeltermine anzeigen
Seminar Mi 12:00 bis 14:00 wöchentlich 09.04.2025 bis 16.07.2025  3.06.S12 Prof. Dr. Markowsky 11.06.2025: 
Literatur

Grimmer/Roberts/Stewart (2022): Text as Data: A New Framework for Machine Learning and the Social Sciences.
More reading material will be provided during the course.

Voraussetzungen

Students should have basic knowledge of R programming and be proficient in the basics of statistics and quantitative analysis.

Leistungsnachweis

Portfolio examination: Presentations (25%) and written papers (75%), on students' own research projects, applying appropriate text analysis methods to address example research questions of their choosing (in coordination with the lecturer)

Lerninhalte

In this course, we review and apply recent advances in computational methods for analyzing text as data. Following the framework established by Grimmer, Roberts, and Stewart (2022), students will learn the theoretical foundations of important text analysis models alongside practical implementation in R. The course provides both conceptual understanding and hands-on skills needed to leverage textual data for research, with a focus on economic analyses.

Preliminary Outline

1. Selection and Representation
   Fundamental concepts and approaches to text as data
   Text preprocessing and representation techniques
   Basic text features and quantification methods

2. Discovery
  Theoretical foundations of key discovery models
  Unsupervised methods for exploring textual data
  Approaches to pattern identification in large text corpora

3. Measurement
   Supervised learning approaches for text analysis
   Methods for quantifying concepts in textual data
   Validation and reliability assessment

4. Inference
   Statistical inference with text data
   Causal inference approaches using textual information
   Applications and limitations of text-based inference
   Text as outcome, treatment, or confounder

Course Format

The course combines lecture elements with practical lab-style sessions. Lectures will cover theoretical foundations and methodological considerations, while lab sessions will focus on implementation in R. Students will work on their own research projects throughout the course, applying appropriate text analysis methods to address example questions of their choosing. These projects will allow students to gain hands-on experience with the full text analysis pipeline from data preparation to inference.


Strukturbaum
Die Veranstaltung wurde 4 mal im Vorlesungsverzeichnis SoSe 2025 gefunden:
Vorlesungsverzeichnis
Wirtschafts- und Sozialwissenschaftliche Fakultät
Wirtschaftswissenschaften
Master of Science
Economics (Prüfungsversion ab WiSe 2014/15)
Wahlbereich
MA-W-110 - Economic Studies I  - - - 1 offens Buch
MA-W-120 - Economic Studies II  - - - 2 offens Buch
Economic Policy and Quantitative Methods (Prüfungsversion ab WiSe 2020/21)
Specialisation: Quantitative Methods
MA-M-310 - Quantitative Methods I  - - - 3 offens Buch
MA-M-220 - Econometric Methods and Applications II  - - - 4 offens Buch